skip to main content


Search for: All records

Creators/Authors contains: "Shen, Yanan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Natural muscles show tensile actuation and realize torsional rotation by combining with the skeleton, which integrate with sensing and signaling function in a single element to form a feedback loop. The currently developed artificial muscle and sensing devices always work upon external stimuli, and a separate controlling and signal transmission system is needed, increasing the complexity of muscle design. Therefore it is highly desired to develop flexible and compact fiber artificial muscles with large strain for advanced soft robotic systems. In this paper, twisted elastomer fiber artificial muscles with tensile and torsional actuations and sensing function by a single electric signal are developed, by using twisted natural rubber fiber coated with a buckled carbon nanotube sheet. The twisted natural rubber fiber can be electrothermally actuated to show contraction and rotation by entropic elasticity. The buckled carbon nanotube sheet can transmit electric current, and the contact area between the buckled carbon nanotube sheets increased during actuation, resulting in resistance decrease by thermo-piezoresistive effect. A feedback circuit was designed to connect or disconnect the electric current by measuring the resistance change to form a feedback loop to control on/off of the muscle. The current study provides a new muscle design for soft robotics, controllers, and human-machine integration. 
    more » « less
  2. Higher-efficiency, lower-cost refrigeration is needed for both large- and small-scale cooling. Refrigerators using entropy changes during cycles of stretching or hydrostatic compression of a solid are possible alternatives to the vapor-compression fridges found in homes. We show that high cooling results from twist changes for twisted, coiled, or supercoiled fibers, including those of natural rubber, nickel titanium, and polyethylene fishing line. Using opposite chiralities of twist and coiling produces supercoiled natural rubber fibers and coiled fishing line fibers that cool when stretched. A demonstrated twist-based device for cooling flowing water provides high cooling energy and device efficiency. Mechanical calculations describe the axial and spring-index dependencies of twist-enhanced cooling and its origin in a phase transformation for polyethylene fibers. 
    more » « less
  3. Rising oceanic and atmospheric oxygen levels through time have been crucial to enhanced habitability of surface Earth environments. Few redox proxies can track secular variations in dissolved oxygen concentrations ([O2]) around threshold levels for metazoan survival in the upper ocean. We present an extensive compilation of iodine to calcium ratios (I/Ca) in marine carbonates. Our record supports a major rise in atmospheric pO2 at ~400 million years ago (Ma), and reveals a step-change in the oxygenation of the upper ocean to relatively sustainable near-modern conditions at ~200 Ma. An Earth system model demonstrates that a shift in organic matter remineralization to greater depths, which may have been due to increasing size and biomineralization of eukaryotic plankton, likely drove the I/Ca signals at ~200 Ma 
    more » « less